本文小编为大家详细介绍“MySQL索引下推是什么”,内容详细,步骤清晰,细节处理妥当,希望这篇“MySQL索引下推是什么”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
SELECT 语句执行过程
MySQL
 数据库由 Server
 层和 Engine
 层组成:
- Server 层: 有- SQL 分析器、- SQL 优化器、- SQL 执行器,用于负责- SQL 语句的具体执行过程。
- Engine 层: 负责存储具体的数据,如最常使用的- InnoDB 存储引擎,还有用于在内存中存储临时结果集的- TempTable 引擎。
- 通过客户端/服务器通信协议与 - MySQL 建立连接。
- 查询缓存: 
- 如果开启了 - Query Cache 且在查询缓存过程中查询到完全相同的- SQL 语句,则将查询结果直接返回给客户端;
- 如果没有开启 - Query Cache 或者没有查询到完全相同的- SQL 语句则会由解析器进行语法语义解析,并生成解析树。
- 分析器生成新的解析树。 
- 查询优化器生成执行计划。 
- 查询执行引擎执行 - SQL 语句,此时查询执行引擎会根据- SQL 语句中表的存储引擎类型,以及对应的- API 接口与底层存储引擎缓存或者物理文件的交互情况,得到查询结果,由- MySQL Server 过滤后将查询结果缓存并返回给客户端。- 若开启了 - Query Cache ,这时也会将- SQL 语句和结果完整地保存到- Query Cache 中,以后若有相同的- SQL 语句执行则直接返回结果。
Tips
:MySQL 8.0
 已去掉 query cache
(查询缓存模块)。
因为查询缓存的命中率会非常低。 查询缓存的失效非常频繁:只要有对一个表的更新,这个表上所有的查询缓存都会被清空。
什么是索引下推?
索引下推(Index Condition Pushdown
): 简称 
ICP,通过把索引过滤条件下推到存储引擎,来减少
MySQL存储引擎访问基表的次数 和
MySQL服务层访问存储引擎的次数。
索引下推 VS 覆盖索引: 其实都是 减少回表的次数,只不过方式不同
- 覆盖索引: 当索引中包含所需要的字段( - SELECT XXX ),则不再回表去查询字段。
- 索引下推: 对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表的行数。 
要了解 ICP
 是如何工作的,先从一个查询 SQL
 开始:
举个栗子:查询名字
la开头、年龄为
18的记录
SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
有这些记录:
不开启 ICP
 时索引扫描是如何进行的:
- 通过索引元组,定位读取对应数据行。(实际上:就是回表) 
- 对 - WHERE 中字段做判断,过滤掉不满足条件的行。
使用 ICP
,索引扫描如下进行:
- 获取索引元组。 
- 对 - WHERE 中字段做判断,在索引列中进行过滤。
- 对满足条件的索引,进行回表查询整行。 
- 对 - WHERE 中字段做判断,过滤掉不满足条件的行。
动手实验:
实验:使用 MySQL
 版本 8.0.16
-- 表创建 CREATE TABLE IF NOT EXISTS `user` ( `id` VARCHAR(64) NOT NULL COMMENT '主键 id', `name` VARCHAR(50) NOT NULL COMMENT '名字', `age` TINYINT NOT NULL COMMENT '年龄', `address` VARCHAR(100) NOT NULL COMMENT '地址', PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT '用户表'; -- 创建索引 CREATE INDEX idx_name_age ON user (name, age); -- 新增数据 INSERT INTO user (id, name, age, address) VALUES (1, 'tt', 14, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (2, 'lala', 18, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (3, 'laxi', 30, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (4, 'lawa', 40, 'linhai'); -- 查询语句 SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
新增数据如下:
- 关闭 - ICP ,再调用- EXPLAIN 查看语句:
-- 将 ICP 关闭 SET optimizer_switch = 'index_condition_pushdown=off'; -- 查看确认 show variables like 'optimizer_switch'; -- 用 EXPLAIN 查看 EXPLAIN SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
- 开启 - ICP ,再调用- EXPLAIN 查看语句:
-- 将 ICP 打开 SET optimizer_switch = 'index_condition_pushdown=on'; -- 查看确认 show variables like 'optimizer_switch'; -- 用 EXPLAIN 查看 EXPLAIN SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
由上实验可知,区别是否开启 ICP
: 
Exira字段中的
Using index condition
更进一步,来看下 ICP
 带来的性能提升:
通过访问数据文件的次数
-- 1. 清空 status 状态 flush status; -- 2. 查询 SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; -- 3. 查看 handler 状态 show status like '%handler%';
对比开启 ICP
 和 关闭 ICP
: 关注 
Handler_read_next的值
-- 开启 ICP flush status; SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; show status like '%handler%'; +----------------------------|-------+ | Variable_name | Value | +----------------------------|-------+ | Handler_commit | 1 | | Handler_delete | 0 | | Handler_discover | 0 | | Handler_external_lock | 2 | | Handler_mrr_init | 0 | | Handler_prepare | 0 | | Handler_read_first | 0 | | Handler_read_key | 1 | | Handler_read_last | 0 | | Handler_read_next | 1 | <---重点 | Handler_read_prev | 0 | | Handler_read_rnd | 0 | | Handler_read_rnd_next | 0 | | Handler_rollback | 0 | | Handler_savepoint | 0 | | Handler_savepoint_rollback | 0 | | Handler_update | 0 | | Handler_write | 0 | +----------------------------|-------+ 18 rows in set (0.00 sec) -- 关闭 ICP flush status; SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; show status like '%handler%'; +----------------------------|-------+ | Variable_name | Value | +----------------------------|-------+ | Handler_commit | 1 | | Handler_delete | 0 | | Handler_discover | 0 | | Handler_external_lock | 2 | | Handler_mrr_init | 0 | | Handler_prepare | 0 | | Handler_read_first | 0 | | Handler_read_key | 1 | | Handler_read_last | 0 | | Handler_read_next | 3 | <---重点 | Handler_read_prev | 0 | | Handler_read_rnd | 0 | | Handler_read_rnd_next | 0 | | Handler_rollback | 0 | | Handler_savepoint | 0 | | Handler_savepoint_rollback | 0 | | Handler_update | 0 | | Handler_write | 0 | +----------------------------|-------+ 18 rows in set (0.00 sec)
由上实验可知:
- 开启 - ICP :- Handler_read_next 等于 1,回表查 1 次。
- 关闭 - ICP :- Handler_read_next 等于 3,回表查 3 次。
这实验跟上面的栗子就对应上了。
索引下推限制
根据官网可知,索引下推 受以下条件限制:
- 当需要访问整个表行时, - ICP 用于- range 、- ref 、- eq_ref 和- ref_or_null 
- ICP 可以用于- InnoDB 和- MyISAM 表,包括分区表- InnoDB 和- MyISAM 表。
- 对于 - InnoDB 表,- ICP 仅用于二级索引。- ICP 的目标是减少全行读取次数,从而减少- I/O 操作。对于- InnoDB 聚集索引,完整的记录已经读入- InnoDB 缓冲区。在这种情况下使用- ICP 不会减少- I/O 。
- 在虚拟生成列上创建的二级索引不支持 - ICP 。- InnoDB 支持虚拟生成列的二级索引。
- 引用子查询的条件不能下推。 
- 引用存储功能的条件不能被按下。存储引擎不能调用存储的函数。 
- 触发条件不能下推。 
- 不能将条件下推到包含对系统变量的引用的派生表。( - MySQL 8.0.30 及更高版本)。
小结下:
- ICP 仅适用于 二级索引。
- ICP 目标是 减少回表查询。
- ICP 对联合索引的部分列模糊查询非常有效。
拓展:虚拟列
CREATE TABLE UserLogin ( userId BIGINT, loginInfo JSON, cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone"), PRIMARY KEY(userId), UNIQUE KEY idx_cellphone(cellphone) );
列
cellphone:就是一个虚拟列,它是由后面的函数表达式计算而成,本身这个列不占用任何的存储空间,而索引
idx_cellphone实质是一个函数索引。
好处: 在写
SQL时可以直接使用这个虚拟列,而不用写冗长的函数。
举个栗子: 查询手机号
-- 不用虚拟列 SELECT * FROM UserLogin WHERE loginInfo->>"$.cellphone" = '13988888888' -- 使用虚拟列 SELECT * FROM UserLogin WHERE cellphone = '13988888888'