本篇内容介绍了“Redis分布式缓存与秒杀怎么实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
一、单点Redis的问题
1、数据丢失问题
Redis数据持久化。
2、并发能力问题
大家主从集群,实现读写分离。
3、故障恢复问题
利用Redis哨兵,实现健康检测和自动恢复。
4、存储能力问题
搭建分片集群,利用插槽机制实现动态扩容。
二、RDB
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。
快照文件称为RDB文件,默认是保存在当前运行目录。
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
当主进程执行读操作时,访问共享内存;
当主进程执行写操作时,则会拷贝一份数据,执行写操作;
RDB方式bgsave的基本流程?
fork主进程得到一个子进程,共享内存空间;
子进程读取内存数据并写入新的RDB文件;
用新RDB文件替换旧的RDB文件;
RDB会在什么时候执行?save 60 1000代表什么含义?
默认是服务停止时;
代表60秒内至少执行1000次修改则触发RDB;
RDB的缺点?
RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险;
fork子进程、压缩、写出RDB文件都比较耗时;
AOF的命令记录的频率也可以通过redis.conf文件来配:
三、AOF
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
AOF的命令记录的频率也可以通过redis.conf文件来配:
| 配置项 | 刷盘时机 | 优点 | 缺点 | 
|---|---|---|---|
| Always | 同步刷盘 | 可靠性高,几乎不丢数据 | 性能影响大 | 
| everysec | 每秒刷盘 | 性能适中 | 最多丢失一分钟的数据 | 
| no | 操作系统控制 | 性能最好 | 可靠性较差,可能丢失大量数据 | 
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
set id 1 set name nezha set id 2 bgrewriteaof mset name nezha id 2
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写auto-aof-rewrite-percentage 100# AOF文件体积最小多大以上才触发重写 auto-aof-rewrite-min-size 64mb
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
| RDB | AOF | |
|---|---|---|
| 持久化方式 | 定时对整个内存做快照 | 记录每一次执行的命令 | 
| 数据完整性 | 不完整,两次备份之间会丢失 | 相对完整,取决于刷盘策略 | 
| 文件大小 | 会有压缩,文件体积小 | 记录命令,文件体积很大 | 
| 宕机恢复速度 | 很快 | 慢 | 
| 数据恢复优先级 | 低,因为数据完整性不低 | 高,因为数据完整性更高 | 
| 系统资源占用 | 高,大量CPU和内存消耗 | 低,主要是磁盘IO资源,但AOF重写时会占用大量CPU和内存资源 | 
| 使用场景 | 可以容忍数分钟的数据丢失,追求更快的启动速度 | 对数据安全性要求较高常见 | 
四、Redis优化秒杀流程
1、秒杀步骤:
查询优惠券;
判断秒杀商品库存;
查询订单
校验一人一单;
减库存;
创建订单;
2、Redis优化秒杀步骤:
新增秒杀的优惠券,将优惠券信息保存到Redis中;
基于Lua脚本,判断秒杀商品库存,一人一单,决定用户是否秒杀成功;
如果秒杀成功,将优惠券id、用户id、商品id封装到阻塞队列中;
开启异步任务,不断从阻塞队列中读取信息,实现异步下单功能;
3、秒杀的lua脚本
4、调用秒杀的lua脚本
public Result seckillVoucher(Long voucherId) {
     Long userId = UserHolder.getUser().getId();
     long orderId = redisIdWorker.nextId("order");
     // 1.执行lua脚本
     Long result = stringRedisTemplate.execute(
             SECKILL_SCRIPT,
             Collections.emptyList(),
             voucherId.toString(), userId.toString(), String.valueOf(orderId)
     );
     int r = result.intValue();
     // 2.判断结果是否为0
     if (r != 0) {
         // 2.1.不为0 ,代表没有购买资格
         return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
     }
     // 3.返回订单id
     return Result.ok(orderId);
 }5、通过线程池,操作阻塞队列
// 线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
/**
* 在类初始化完成后执行
*/
@PostConstruct
private void init() {
    SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
// 阻塞队列
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
private class OrderHandler implements Runnable{
    @Override
    public void run() {
        while (true){
            try {
                doSomething();
            } catch (Exception e) {
                log.error("处理订单异常", e);
            }
        }
    }
}五、基于Redis实现共享session登录
基于session实现登录
基于Redis实现共享session登录
public class RefreshTokenInterceptor implements HandlerInterceptor {
    private StringRedisTemplate stringRedisTemplate;
    public RefreshTokenInterceptor(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }
    @Override
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
        // 1、获取请求头中的token
        String token = request.getHeader("authorization");
        if (StrUtil.isBlank(token)) {
            return true;
        }
        // 2、基于TOKEN获取redis中的用户
        String key  = LOGIN_USER_KEY + token;
        Map<Object, Object> userMap = stringRedisTemplate.opsForHash().entries(key);
        // 3、判断用户是否存在
        if (userMap.isEmpty()) {
            return true;
        }
        // 5、将查询到的hash数据转为UserDTO
        UserDTO userDTO = BeanUtil.fillBeanWithMap(userMap, new UserDTO(), false);
        // 6、存在,保存用户信息到 ThreadLocal
        UserHolder.saveUser(userDTO);
        // 7、刷新token有效期
        stringRedisTemplate.expire(key, LOGIN_USER_TTL, TimeUnit.MINUTES);
        // 8、放行
        return true;
    }
    @Override
    public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {
        // 移除用户
        UserHolder.removeUser();
    }
}